BDI Agents for Game Development *

Arran Bartish
Royal Melbourne Institute of Technology
GPO Box 2476V,
Melbourne, Victoria, 3001,
Australia

abartish@bigpond.com

ABSTRACT

The study of game related topics has long been the sub-
ject of research and development, however game Artificial
Intelligence (AI) predominantly uses classical Al simulation
techniques. The AI community continues to develop con-
cepts regarding various types of agents, genetic algorithms,
and others, while older computational models such as state
machines continue to be used as the back bone for game Al
development. In this research, we have attempted to shed
some light on how the choice of implementation may affect
the important factors such as performance, and complexity
as the games scales up. We have used performance mea-
sures, cognitive activities of designers and software metrics
to arrive at our conclusions. Our findings show that agents
and finite state machines have their relative merits. We
have shown that, complexity measured as a function of the
number of behaviours was linear for agents and quadratic
for FSM. Though run-time performance is comparable for a
small number of entities, it degrades higher for agents.

General Terms
JACK, Bomberman, JAVA, Agents, BDI, State Machines,
FSM, Games

1. INTRODUCTION

The objective of this research was to find which model is
more appropriate for game AI, and under which circum-
stances one model might be chosen over another. Due to
the frustration of the industry and of users with what seems
to be behavioural simplicity of game AI, we must define the
advantages and disadvantages of both traditional state ma-
chine based and a BDI agent game AI. These choices will
be determined through performance, iterative modification,
and software engineering criteria. The reason being that
each of these issues is of key importance to game develop-
ment, a major software development undertaking.

*©Copyright 2001. For use with AAMAS

AAMAS 2002 Bologna, Italy. Paper ID: 239

Charles Thevathayan
Royal Melbourne Institute of Technology
GPO Box 2476V,
Melbourne, Victoria, 3001,
Australia

charles@cs.rmit.edu.au

Over the past years games have experienced many improve-
ments, unfortunately many of these have not been in game
AT This has lead to problems where released games are spec-
tacular in either 3D graphics, or in user interface, but Artifi-
cial Intelligence seems neglected. This is the part that makes
a game fun and challenging to play. Despite much academic
research being devoted to AI, the games industry contin-
ues to use rudimentary computer science technology such
as state machines to create the desired behaviour for game
entities. Recently the mould has begun to crack as a num-
ber of game titles are changing tack and focusing upon Al
rather than graphics and interface. This could be a sign of
things to come especially given the popularity and longevity
these titles have enjoyed since release.

Given this seemingly changing environment in the games in-
dustry, exotic models for AI are being explored, but few ever
get incorporated into games. This is partly due to the indus-
try’s general comfort with existing models, and the ever in-
creasing urgency to release games in a shorter space of time.
To our knowledge there has not been a formal comparison
of current game AI technology such as state machines, and
what is considered exotic forms of game AI like the Belief-
Desire-Intention (BDI) [10, 11] agent architecture.

A formal definition of the pros and cons of both current
game technology and BDI agents, will bring us one small
step closer to providing a higher quality of entertainment.
Games provide unique environments to test new and exotic
technologies that otherwise could not be thoroughly tested
in real world environments.

The new games appearing in the market are using more hu-
man like characters and are incorporating forms of cognitive
learning. Attempts have been made to incorporate some of
the newer technologies such as BDI in game development.
However no thorough work has been done to analyse the
merits of traditional and agent methods.

2. BACKGROUND OF THE PROBLEM

This research required the development of a game to use as a
test case. In addition to this two models were implemented
to simulate the intelligent behaviour. One model was an
agent, the other a state machine.

21 JACK

JACK is an agent programming language developed by an
Australian based company called Agent Oriented Systems.

It is an extension to the JAVA API, which allows the use of
several other base classes. These base classes include Plan,
Event, Database as well as some others. JACK allows the
simple and easy definition of simple intelligent agents and
BDI agents, with very little trouble for the programmer.
JACK also allows the programmer to use the normal JAVA
API, a huge advantage considering the growing popularity
of the language.

JACK is the base we used to create our Bomberman agent.
The reason for this was two fold. The first and most ob-
vious reason is the availability of JACK and the support
from Agent Oriented Systems. The second being its rela-
tionship with JAVA to allow quick platform independent
development. In addition to this, we could develop an agent
model and state machine model that were both JAVA based.
It would not be a justifiable comparison if the two models
were based on separate languages. Using JACK allowed us
to use inheritance and other object oriented techniques that
gave us the flexibility to swap one model for the other as
required.

In order for us to do a comparison on state machines and
agents, we need to describe how a JACK agent chooses to
execute plans. JACK seems to have taken inspiration from
event driven programming, as JACK agent plans are depen-
dent upon event-like goals. Our JACK agent uses rule-based
evaluation (similar to the state machine) to decide which
event should be fired. When an event is fired the relevant
plans are initiated and can be executed. So in this way
events are much like goals in that when an event is fired,
plans are executed to achieve the goal represented by the
fired event. JACK allows a lot of versatility in this mat-
ter, and plans can evaluate their own suitability before they
execute. Many JACK features such as plan self-evaluation
and teamwork, were left out to allow for a fairer comparison
between state machine and agents.

Unfortunately JACK also has a number of problems. Some
of these problems were cited by John Thangarajah [14]. He
highlights a problem with JACK in its inability to represent
goals in a traditional sense, a fundamental concept for BDI
agents. He continues to describe his proposed addition to
JACK to allow this feature. It must be noted that while
this addition could be made in future research, we have used
unmodified JACK as this would suffice for the purposes of
this research. The version we used was JACK 3.2 released in
the middle of 2001. For more information on JACK please
see user guides [6, 5]. For more information on JACK and
teamwork see [7].

2.2 Games

Games programming involves many core areas of computer
science. Increasing the computational requirements of games
pose many problems. Some of the problems being tackled
range from graphics clusters, algorithms for polygon limit-
ing, artificial intelligence, and NP complete problems like
“travelling salesman”. This makes the game industry a fine
test bed for innovative ideas and concepts at the leading
edge of current technology. There has always been con-
straints forced on game AI, brought about through the need
for graphics and IO processing, however these are becoming
less of a problem as hardware for these purposes improves.

2.2.1 Finite Sate Machines

State machines have long been the most popular implemen-
tation of game entity behaviour [16]. State machines are
easy to understand, and are a concept most computer sci-
ence graduates have been exposed to. Students commonly
use state machines for the parsing of grammars. What most
of these students don’t understand is that a state machine
can be a very powerful implementation to simulate intelli-
gent behaviour in games. They have been the traditional
implementation for game AI for many years, and it appears
they may be for many more. The basic characteristics of a
state machine are:

That it has a fixed amount of memory.

A state machine is driven by input.

It undertakes transitions between states.

It produces simple output.

The concept of a finite state machine has long been devel-
oped and improved over the past decades to include varia-
tions such as fuzzy state machines and fuzzy logic. However
these implementations will not be the focus of this research,
and a traditional finite state machine will be used during the
experiments. For an introduction to finite state automata
or if the reader desires more information about the topic of
computation, we refer you to [4] for an in depth introduction
and description of finite state automata. State machines
can be used to process complex and dynamic game envi-
ronments. However they are prone to software engineering
issues [15, 3], such as duplicate state decision points, that
threaten to break even well designed state machines.

State machines are best described as deterministic by na-
ture, and implementing them can lead to software engineer-
ing problems as mentioned above. There are three promi-
nent ways to implement a state machine [3], and the choice
as to which implementation was to be compared in this re-
search was of utmost importance. The first is using a block
of if, or switch statements which are executed on some con-
dition or state. This method could easily lead to duplicate
state decision points, a common flaw in this method. A du-
plicate state decision point can occur through poorly docu-
mented code, and results in conflicting transition conditions.
In addition they blur the concept of state and transition
where a transition or condition statement might contain the
implementation of the state. Another implementation is a
decision table, indeed a number of games have used this
implementation. It is fast, however it restricts versatility
and this is far from satisfactory given the dynamic envi-
ronment of games. The third choice (and the one used for
this comparison) is an object state machine, where a state,
its implementation and transitions are encapsulated by an
object. State transitions in the object state machine are
represented by an engine that keeps track of the current
state. This model has a slightly higher run-time cost, but
it’s conceptual advantages out weigh this cost.

2.2.2 Current Game Al Technology and Trends
Steven Woodcock sites at the 2001 Game Developers Con-
ference that the majority of games being released still use a

w One or more ® Percent of overall

developers dedi- game CPU reserved
cated lo game Al for Al processing
I 100 S ;
70 3
2 a
70 j
L+F]
E 60 ; ==
50
| ©
= 30 E
201+ g J
10} §] :
A |

1997 1998 1999 2000 2001 GDC

Figure 1: Current Industry trends with regard to
Al resource allocation (Chart extracted from [16]).

state machine implementation [16]. This is interesting how-
ever, as the industry as a whole seems to be devoting more
resources than ever before to game AI. In the same article,
Steven Woodcock describes how the number of programmers
per project devoted to AI has grown from 1 just 5-6 years
ago, to a dedicated team of developers per project (see fig-
ure 1). For convenience figure 1 has been provided. He also
discusses how greater amounts of CPU time are also being
allocated to AI processing. This could be partly related to
the fact that a lot of graphics processing that used to be un-
dertaken by the CPU, is now being delegated to dedicated
graphics accelerators. This would have the effect of leaving
the CPU available for other tasks. Most developers feel that
Al is growing in importance and will have a greater effect
on games of the future [8].

State machines have a number of inherent problems. One
such problem is referred to as duplicate state decision points
as cited by [15, 3]. This is a software engineering issue that
can be quite troublesome and could potentially break any
State Machine. This problem usually occurs when code is
not properly commented and documented. The result being
states could be implemented that have conflicting or iden-
tical state decision points, or conflicting rules. Obviously
this could cause a detrimental effect if your in-game tank
suddenly finds itself in an incorrect state due to one of these
conflicting rules. The second problem is more of a prob-
lem inherent in all state machines. Because state machines
are deterministic by definition, the behaviour produced by a
state machine is also deterministic. This leads to behaviour
that is predictable. To avoid predictability, most developers
are either using fuzzy state machines or fuzzy logic, even
so these are still based on a model state machine model.

Indeed most of the AI scripting that is being implemented
for most games gets abstracted into some form of state ma-
chine. While more exotic models for game AI are being
looked into, developers with ever decreasing schedules are
finding that the time required researching these other mod-
els are beyond what they can afford. So in the tradition of
commercial industry, many new and exciting techniques are
being put into the too hard bin as developers resort to the
tried and tested techniques such as the finite state machine.

As the average bandwidth a user has available for commu-
nication increases with connections to the internet such as
ASDL and cable, games are starting to show a shift away
from single user environments. Instead users are finding that
games can be more challenging and generally be more fun
due to multi-user aspects of the games. These games par-
ticularly are aimed at the multi-player environment and yet
we find that AT could be just as important even though AI
might not be required. Often users logon to a game server to
find it empty just to leave and find another server. Another
situation that might arise is where users find themselves in
unbalanced teams, where the team of greater numbers dom-
inates the game. What would be the result if believable
BDI agents could be introduced to add some numbers to
a realm or even out mismatched teams dynamically during
game play and of course be removed when no longer needed?
Such features would improve the experience of online gaming
in general. The team aspect is of utmost importance when
talking about games dependant on teamwork. In most cases
Al is not required, however there are those times like those
mentioned above, when plausible AT opponents would be of
great value to the game. It must be noted that AI oppo-
nents can already be included most games, however these
opponents are either ordinary in skill, or not plausible as a
human player, ie too hard, or too easy.

2.3 A State Transition in Thinking

Recently there has been a real break from the established
mould of game AI by the game Black & White by Lion-
head Studios [8, 2]. The use of the BDI architecture as
well as a number of cognitive learning skills show just how
appropriate agent concepts are to these highly dynamic vir-
tual environments. Included in Black & White are other
agent concepts such as agent emotions, where game charac-
ters can become depressed and exhibit human reactions to
these emotions such as binge eating. Obviously this adds
whole new dimensions to the game experience. It could be
that this is the start of things to come in game AI, citing
games such as Black & White, The Sims, and others with
sophisticated user interaction as proof of concept. Just as
graphics have been a draw card for most games in the past,
sophisticated AI could be a draw card for games being pro-
duced in the future. It is hoped that by producing games
with greater intelligence, game characters will challenge the
user and keep their attention for a greater period of time
than they do currently. This change in focus shows that the
game industry is beginning to mature from the 3 friends in
a garage to an industry that is relying heavily on research
and creative thinking coming from the academic world.

The way in which Game development is changing also re-
flects the growing focus of AI in games as figure 1 shows.
There is a trend that most development teams are allocat-

il

Figure 2: Blue and Red Bombermen at initial Start-
ing locations.

ing at least one or more personnel specifically to AI which
is in contrast to only a few years ago, where game AI was
hacked together in the last month or so of the project by
anyone who had time. In addition to this, as mentioned be-
fore, Al is being allocated more CPU time than it ever has
been previously. This, coupled with the increased allocation
of human resources to AI development, makes it clear that
developers are giving AT a much higher priority than it has
enjoyed in the past. We can therefore infer that we will see
more of the sophisticated Al prevalent in Black & White in
up future games.

2.4 Simulation Vs Game

There is a difference between a simulation and a game. How-
ever sometimes that line blurs, making the distinction diffi-
cult to identify. We find that simulations are often based on
real world environments and physics. A game however, will
embellish those truths in the interest of user entertainment.
When someone decides to create a simulation, the object is
to model something as close as possible as it is in the real
world. The line that distinguishes simulations and games
blurs during the design of a game when designers decide to
make a game both enjoyable to the user and keep behaviour
in the game realistic. Past research has seen agents used in
battle simulations [12, 13] for teamwork, and in games such
as Pengi [1]. Even with research such as this, it seems that
very little investigation has been done on direct comparisons
between developing agent architectures such as BDI cogni-
tive agents and the classic game Al implementations of state
machines.

2.5 Atomic Bomberman

Atomic Bomberman was a game produced by Interplay in
the mid 1990’s. Atomic Bomberman is a recreation of a
much older game that has long been popular and was first
released around the same time as Pac Man. It is a 2D game
with an obvious state machine implementation, which often
leads to predictable and simple behaviour. Figure 2 shows a
possible start of game situation for a blue and red Bomber-
man. The objective of the game is to remove crates and
create a path toward the enemy. Following this, they must

try and trap their enemy and blow them up. A problem that
faces the Bombermen is to move toward the enemy, without
blowing themselves up. When contact has been made they
must attempt not to get trapped themselves while endeav-
ouring to trap their opponent. Bomberman is a dynamic
environment that is changing constantly. This fact makes
Bomberman a perfect candidate to test agents. It must be
noted that this research is not about Bomberman, but a
direct comparison of the two models. Hence the game is
subject to change in order to produce more accurate exper-
imental results. Indeed changing the game by adding new
game entities, and analysing how it effects the software de-
velopment process, is an important part of this research.

3. CODE AND DESIGN COMPLEXITY

Game development typically follows a prototyping approach
where new behaviours are added until a playable game that
can sustain the users interest is created. Thus it is important
that any methodology used lends itself to such an approach.
At the design stage this may involve adding new behaviours
and changing the interactions among the entities. At the
programming level this involves adding more logical paths
which naturally adds to the complexity.

3.1 Design complexity

To measure the design effort involved objectively, we have
devised a control experiment where a design diagram had
to be changed to reflect a new game entity. Six students
from RMIT volunteered to take part is this experiments. All
of them have encountered state-machines in their course of
study and had some understanding of agent technology. All
participants received the same design problems - enhancing
the Bombermen with an additional terminator entity. They
were also provided with short description of Bomberman
details of the design specifications. Figures 3 and 4 show
the original state machine and agent definitions.

A simple scoring system was created to grade the quality of
designs into 3 categories, good, workable and wrong. The
time participants took to complete the design was noted
down. Based on our criteria all the agent extensions were
correctly identified and had little or no variation among
them. Of the state-machine extensions, one was graded
good, three were workable and two were found wrong. Most
commented that they found the state machine version re-
quired a lot more analysis while the agent version was very
similar to human reasoning. The time taken by the various
participants are listed in table 1. Note, to ensure fairness
we made three of the participants complete the agent de-
sign first and the others vice-versa. On average, the design
changes to state machine version was 4.5 times faster.

State Machine First Agent First

Pl [P2 | P3 | PA[P5]P6

State Machine 7 8 4 4 2 2
Agent 1.5 1.5 1 1 1 0.5
Ratio 4.7:1 | 5.3:1 4:1 4:1 | 2:1 | 4:1

Table 1: The time taken to make modifications in
minutes

The designs in figures 5 and 6 were the most representative

Out Of Danger

Bomb
Detected

Target In Range Planting

Bornb

Blown Up

Target Lost

Blown Up

Figure 3: Initial State Machine definition for
Bomberman before modification

Terminatar
Detected

Terminatar
Detected

Run From

Terminator Detected

Terrminator
D etected

Terminator
Detected

Target In Range Planting

Bomb
Blown Up

Target Lost

Elown Up

Blown Up Blown Up

Figure 5: State Machine definition for Bomberman
after modification (Changes shown in red)

Agent Goals Corresponding

JACK events

Agent Plans
To Execute

Agent Goals Corresponding

JACK events

Agent Plans
To Execute

Escape Bomb Bomb Detected Escape Bomb

Escape Bomb Bomb Detected Escape Bomb

Move To Target Target Out Of Range Track Target

Move To Target Target Out Of Range Track Target

Find New Target Target Not Found Find Target

Find New Target Target Not Found Find Target

Blow Up Target Target In Range Place Bomb Blow Up Target Target In Range Place Bomb
Escape Terminator Terminator Detected Run From
Terminator

Figure 4: A Simple agent definition that novice
Agent designers can quickly understand.

of the extended versions.

Note that the state machine version has undergone extensive
changes reflecting the high coupling of this design. The de-
sign change to agent version, merely involves an additional
goal with a corresponding event and plan.

3.2 Code Complexity

We then attempted turning our representative design into
equivalent code measuring the additional changes involved.
Table 2 shows the changes involved.

Model Total Classes Total
Modified Changes

Agent Module 3 7

State Machine Module 6 10

Table 2: A summary of all modifications required to
add a simple change to behaviour. (See appendix
for more detail

To measure the programming complexity, objectively, we
have used McCabe’s Cyclomatic Complexity metric. Intro-

Figure 6: A common design modification produced
by experimentation

duced by Thomas McCabe in 1976, it measures the number
of linearly independent paths through a program or module.
It is a widely used metric for measuring soundness and confi-
dence of a program. Asthe McCabe’s cyclomatic complexity
values below shows, higher the complexity of a design, the
harder it is to maintain, and higher the risk of introducing
bugs.

We then applied the McCabe’s cyclomatic complexity equa-
tion for both models before and after incorporating the changes.
Table 4 shows the results.

The original version for state-machine has a much high de-
gree of complexity when compared with agent. What is
more interesting though, is the rate of change in complexity
resulting from 1 additional behaviour. Complexity metric
has increased by 8 for state-machine version as opposed to
1 for agent. Extrapolating this trend, one could easily con-
clude that the state-machine implementation would become
untenable with increasing number of behaviours.

3.3 Worst Case Analysis

| Cyclomatic Complexity | Risk Evaluation |

1-10 simple, without much risk

11-20 more complex, moderate risk

21-50 complex, high risk
greater than 50 untestable (very high risk)

Table 3: McCabe’s cyclomatic complexity values.

(9]

McCabe’s Complexity |

Model Original | After Modification
State Machine 17 25
Agent 6 7

Table 4: Complexity of State transitions and Agent
plan initiation

Intrigued by the differences in complexity between state-
machine and agent implementation we proceeded to analyse
the worst case scenario for both models. For state-machine
any additional behaviour may be represented by a new node.
Hence, for state machine with n nodes, a new behaviour may
introduce up to 2n new transitions resulting in an additional
2n logical paths. Hence the increase in complexity for each
additional behaviour is 2n. Summing it over the total be-
haviours ¢ we arrive at:

n=t
Y om=t"+1
n=1

With BDI agent, adding a new behaviour amounts to adding
a new plan. Hence the complexity for a total of ¢ behaviours
is just t. Hence we have shown that the complexity for
FSM and agent are of a different magnitude, quadratic and
linear respectively. Hence we conclude that agent behaviour
lends itself to more complex and intelligent systems, when
compared with FSM.

4. PERFORMANCE ISSUES

To objectively compare the speed of agent implementation
with that of the BDI implementation we devised the exper-
iment below. We created a new game, where two state-
machine Bombermen, played against two agent Bomber-
men, until game completion. The game was repeated 2000
times to balance out any unusual results. Both implementa-
tions had a similar level of intelligence defeating each other
roughly equal number of times. The average cycle time for
both implementations can be seen in figure 7.

The results showed that runtime-performance for both im-
plementations are of a similar magnitude. The slightly higher
cycle-time could be attributed to the additional overheads
involving JACK agents.

As the games are getting more complex all the time we at-
tempted to measure, how the runtime-performance will de-
grade with increasing number of characters. The experiment
above was repeated with number of characters increasing

Average Decison Time {Team)

16

14
12

10

Milli-Seconds
[ESE =y R x)

[]

State Machine Agent
Model

Figure 7: Performance of both models after 2000
runs in a Many Vs Many situation

Average Cycle Time

7an
A
&00
w0 L —+— State Machine ./
2 —u— Agent /

=

S 400

L 1]

a

¥ 300 T

Tatal Cyela Time

e
100 +—4——pr

D T T T T T T T T T
4 5] a8 Mo 12 14 16 18 20 22
Number Of Bombermen

Figure 8: Performance of both models after 2000
runs, as the number of Bombermen increase by 2’s
from 4 to 22

from 2 to 22 in steps of 2. The results are shown in figure 8.

As can be seen, both implementations show a linear increase
in cycle-time as the number of characters increase. This
would allow designers to predict the run-time performance
with reasonable confidence. The rate of increase however,
is much greater with agents possibly due to the additional
overheads involving threads and events for each agent. State
machine implementation allows itself to be optimised easily
when compared to BDI agents. We have proposed some
hybrid designs, which may take advantage of both models.
More research must be done in this area.

5. CONCLUSION

The conclusions we can draw from this research can be dis-
tilled down into two categories, design and code complexity,
and run-time performance.

5.1 Complexity
e The design complexity of the state machine (quadratic)
and the agent (linear) are of a different order.

o Code complexity for the state machine increases sig-
nificantly as the game scales up with more behaviours.
For the agent model, the complexity increases linearly.

o We conclude that the agent model is more suited to the

new type of intelligent games emerging in the market,
from a complexity point of view.

5.2 Performance
e The run-time performance for FSM and agent model
is comparable when the game entities involved are few.

e There is a linear increase in cycle time for both models,
though the overhead is much higher for the agents.
This makes FSM the natural choice when the number
of entities are large and the speed is critical.

6. FURTHER WORK

6.1 Team Behaviour
Team behaviour was not thoroughly tested during this re-

search, as time constraints prevented any significant progress.

This makes team behaviour a natural extension of this re-
search. Initial investigations showed that an agent imple-
mentation of team behaviour would not be overly difficult.
Pursuing this line of research would not be possible without
a state machine equivalent. It would be of particular inter-
est to measure how the team behaviour affects complexity
and performance issues.

6.2 Hybrid Approach

Some research must be done to see if a Hybrid model could
be produced that take advantage of a state machines per-
formance and an agents ease of design and coding. To our
knowledge there has been little investigation into this topic.
Some possible hybrids could be.

e An agent which controls the state transitions for all
state machines. In this way only a single agent would
ever be created, reducing the accumulative overhead,
while taking advantage of a state machines perfor-
mance and centralising its rule based evaluations in
the agent.

e An agent definition that could only post specific events,
given the evaluation of an internal state.

This is by no means an exhaustive list of configurations, yet
could serve as a starting point in any research into a hybrid
approach.

Acknowledgments

Special thanks must go to Peter Bertok for his support and
guidance in fine tuning the direction of the research and for
the benefit of his many years of experience.

We would also like to thank the Agents at RMIT group,
for their indirect and direct support through the year espe-
cially James Harland, Michael Winikoff, and Lin Padgham.
Thanks must also go to those who participated in the de-
sign complexity experiments, whose participation came at
exactly the right moment.

We must also make a special mention of Rein Van Noppen
who provided equipment during the experimental phase.

7. REFERENCES
[1] P. E. Agre and D. Chapman. Pengi: An
implementation of a theory of activity.

[2] R. Evans. The future of ai in games: A personal view.
Game Developer, pages 46 — 49, Aug. 2001.

[3] C. Hecker and Z. B. Simpson. State machine aka
(non)deterministic finite state machine, finite state
automata, flow chart. Game Developer, page 8, Jan.
2001.

[4] H. R. Lewis and C. H. Papadimitriou. In Elements of
the Theory of Computation Second Edition, pages
55—111, Prentice-Hall, inc, 1998.

[6] A. O. S. A. P. Ltd. Jack intelligent agents, practicals.
2001.

[6] A. O.S. A. P. Ltd. Jack intelligent agents, user guide.
2001.

[7] A. O. S. A. P. Ltd. Simpleteam technical brief. 2001.

[8] P. Molyneux. Postmortem: Lionhead studios’ black &
white. Game Dewveloper, page 8, June 2001.

[9] R. S. Pressman. In Software Engineering A
Practitioner’s Approach, pages 120-125, McGraw-Hill
Companies, inc, 1997.

[10] A. S. Rao and M. P. Georgeff. Modeling rational
agents within a bdi-architecture. 1991.

[11] A. S. Rao and M. P. Georgeff. Bdi agents: From
theory to practice. 1995.

[12] M. Tambe. Executing team plans in dynamic,
multi-agent domains. 1996.

[13] M. Tambe. Towards flexible teamwork. 1997.

[14] J. Thangarajah. Representation of goals in the
belief-desire-intention model. 2000.

[15] D. Weinstein. State decision and consequence
separation aka duplicated state decision points. Game
Dewveloper, page 13, Dec. 2000.

[16] S. Woodcock. Game ai: The state of the industry 2000
- 2001. it’s not just art, it’s engineering. Game
Dewveloper, pages 36 — 44, Aug. 2001.

